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T O . o . : . .
~ The local instability properties of a chaotic system are determined by the sin-

gular vectors and singular values of the dynamical evolution operator, linearized
about a finite trajectory portion of the integral curves of the nonlinear equa-
tions. Knowledge of these quantities allows an assessment of the reliability of a
finite-time forecast from a chaotic system.

After a brief study of the Lorenz model, singular vector analysis is applied to
study three predictability issues in atmosphere—ocean dynamics. The first con-
cerns the predictability of weather forecasts of a few days, and singular vector cal-
culations are made from a large-dimensional numerical weather prediction model
using an iterative Lanczos algorithm. The second concerns the predictability of
El Nifio on seasonal to interannual timescales. Here singular vector calculations
are made using a coupled ocean—atmosphere model of the tropical Pacific region.
Finally we show results from a multi-decadal integration of a medium-resolution
quasi-geostrophic model, and discuss the possible relevance of singular vector
analysis for the problem of climate change.
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1. Introduction

The global instability characteristics of a chaotic system are, of course, deter-
mined by its positive Lyapunov exponents. They measure the asymptotic expo-

Al

2 nential divergence of initially close trajectories on the system’s strange attractor;
> >~ its climate.

oF Such attractors are not amorphous. The Lorenz (1963 a) attractor, for example,
[~ ﬁ comprises two distinct régimes or ‘butterfly wings’. This structure in turn induces
250 @) inhomogeneity in the local phase-space divergence of trajectories. Knowledge of
O the local-phase space instability of a chaotic system allows an assessment of the
=w reliability of a finite-time forecast from a chaotic system. Inhomogeneity of local
=

5z . o . .

EQ t This paper was produced from the authors’ disk by using the TEX typesetting system.

6§ é Phil. Trans. R. Soc. Lond. A (1994) 348, 459-475 © 1994 The Royal Society
8‘2 Printed in Great Britain 459

—d

Ta

=

Y
The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to Q%‘jﬁ%

Philosophical Transactions: Physical Sciences and Engineering. MIKOIY
WwWw.jstor.org


http://rsta.royalsocietypublishing.org/

A

R
\\ \\
P

/

A \
Y

A

a

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY /3%

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

460 T. N. Palmer and others

phase-space predictability also affects the system’s variable response to a fixed
external forcing.

In this paper, we shall explore the use of singular vector analysis as a means
of quantifying the local instability properties of a chaotic system. The singular
vectors in question are of the dynamical evolution operator, linearized about a
finite trajectory portion of the integral curves of the nonlinear equations. Unlike
the eigenvectors of that operator, the singular vectors can usually be chosen to
form an orthonormal basis for linear perturbations. The corresponding singular
values give local divergence rates, and the singular vector with largest singular
value represents the linear perturbation with largest growth over the trajectory
portion. Unlike the Lyapunov exponents, the singular values do not necessarily
describe exponential growth.

In §2 we briefly describe some of the formalism of singular vector analysis and
outline the close relations to more familiar energy-growth concepts: normal mode
instability, upscale quasi-turbulent transfer, and the already-mentioned Lyapunov
exponents.

In §3, after a brief discussion of these concepts in the Lorenz model, we apply
the analysis to three prediction problems in atmospheric-ocean dynamics. The
first relates to forecasting the predictability of weather on timescales of a few
days using complex numerical weather prediction models. The second relates
to an analysis of the predictability of the El Nifio phenomenon, during which
equatorial Pacific sea surface temperatures warm by several degrees and disrupt
the normal weather patterns over much of the globe on timescales of a few seasons.
The El Nino is an irregular event, occurring every three or four years on average.
Its prediction requires coupled ocean—atmosphere models. Finally, we discuss the
possible relevance of singular vector analysis for the problem of climate change.

2. Basic formalism

We start by considering a general (M-dimensional) nonlinear evolution equa-
tion, da/dt = Alz]. (2.1)

For example, for the application of this analysis in § 3 a, (2.1) represents a complex
numerical weather prediction model used at the European Centre for Medium-
Range Weather Forecasts (ECMWF) (Simmons et al. 1989).

Consider a small perturbation &’ of the state vector x. For sufficiently short
time intervals, its evolution can be described by the linearized approximation

de'/dt = Az’ (2.2)

of (2.1). Ay = (dA/dz)|.) is the linear evolution operator evaluated on the
nonlinear trajectory (t).
Equation (2.2) can be written in the integral form

2'(t) = L(t, to)2' (to). (2.3)

The operator L(t,tq) is referred to as the forward tangent propagator; it maps
small perturbations along the (nonlinear) trajectory from an initial time ¢, to
some future time ¢. From here on we drop the primes on the perturbation quan-
tities. For the application to weather prediction, if x(t¢y) is the typical error in

Phil. Trans. R. Soc. Lond. A (1994)
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the initial conditions for a weather forecast, then (2.2) and (2.3) hold for approx-
imately three days of integration time.

We now define an inner product (z; y) based on total perturbation energy. By
using (2.3) the perturbation norm at time ¢ is given by

lz(®)]1* = (2(t); 2(t)) = ((to); L* Lz (t0)), (24)

where L* is the adjoint of L with respect to the energy inner product.

Unlike L itself, the operator L*L (sometimes referred to as the Oseledec oper-
ator (Abarbanel et al. 1991)) is symmetric. Hence its eigenvectors v;(t,) can be
chosen to form a complete orthonormal basis in the M-dimensional tangent space
of linear perturbations, with real eigenvalues o7 > 0 (see, for example, Noble &

Daniel 1977), i.e. (L*L)Vi(to) — U?Vi(to). (25)
At future time ¢, these eigenvectors evolve to v;(t) = Lv;(to), which in turn satisfy
the eigenvector equation (LL*)w,(t) = o2vi(t) (2.6)
From (2.4) and (2.5),

l()* = (vi(to); L* Lvi(to)) = o7 (2.7)
Because any x(t)/||z(t)|| can be written as a linear combination of the set v;(t),
it foll that
1 foTiows Tha Joax ([|z(®)[|/[|z(to)ll) = o1 (2.8)

Following the terminology of linear algebra, the o;, ranked in terms of magnitude,
are here called the singular values of the operator L and the vectors v;(t) are called
the singular vectors of L. Maximum energy growth over the time interval ¢ — ¢,
is therefore associated with the dominant singular vector: v;(ty) at initial time,
and v, (t) at optimization time.

Singular vector analysis is a generalization of classical normal mode instability
analysis. This can be made explicit by linearizing about a stationary solution,
so that normalized eigenvectors &; of A, with eigenvalues p; give rise to modal
solutions &; exp[(t — to)us] of (2.2). The integral operator L(t,ty) can be written
as exp|(t — to) A)], with eigenvectors €; and eigenvalues exp[(t — to)pi].

For application to atmosphere—ocean dynamics, the linear evolution operators
associated with realistic stationary basic state flows are generally not normal
(L*L # LL*) because of vertical and horizontal shear. In this circumstance,
normalized eigenvectors 7, and eigenvalues 6; of the adjoint operator L* satisfy
the biorthogonality condition

(tui - ezcc)("’zvfz) =0, (29)
where cc denotes complex conjugate. This condition ensures that the eigenvalues
of an eigenvector/adjoint eigenvector pair that are not orthogonal, must form
a complex conjugate pair. The magnitude of the inner product (n,,&;) for such
eigenvector pairs depends on the angle, «;, they subtend in phase space.

If an initial disturbance comprises a linear combination of the eigenvectors &;
so that w(t) — Z ciEieHi(t—t0)7 (2,10)
%

then from the biorthogonality condition (2.9)
c¢i = (m;, @ (t0))/ (M, &)- (2.11)

Phil. Trans. R. Soc. Lond. A (1994)
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From (2.10), the fastest growing normal mode will ultimately dominate the lin-
ear combination. Hence for sufficiently long optimization times, the dominant
singular vector at optimization time will correspond to the most unstable normal
mode. (Because the singular values are real, whilst the normal mode eigenvalues
are complex, there is an arbitrary phase factor that has to be defined to make
this correspondence precise.)

To maximize the contribution of the first normal mode at optimization time, c;
in (2.10) should be as large as possible. If z(t) equals £, then ¢; = 1, which could
be highly sub-optimal. If fact, if @ (o) projects onto 7),, then ¢; is maximized and
is given by the projectibility factor 1/(cos ;) (Zhang 1988).

Hence, for indefinitely long optimization time, the dominant singular vector, at
initial time, is determined by the first adjoint eigenvector, whereas the dominant
singular vector at optimization time is determined by the first normal mode itself.
The singular value will depend on both the e-folding time of the dominant normal
mode and its projectibility. For finite optimization time the dominant singular
vectors will no longer project onto individual normal mode solutions (and their
adjoints), and the amplitude of finite-time instabilities need not be bounded by
properties of the dominant normal modes alone.

If, instead of linearizing about a single stationary point on the climate attractor,
we consider the other extreme of linearizing about a (time-evolving) trajectory
portion which is sufficiently long to approximately cover the entire attractor, then
according to the multiplicative ergodic theorem of Oseledec (1968) the singular
values again have exponential dependence exp[(t — t9)A;] on optimization time,
where the Lyapunov exponents, A;, do not themselves depend on position on the
attractor. The corresponding set of singular vectors v;(t) can be referred to as the
Lyapunov vectors. Note that although the Lyapunov exponents are themselves
global quantities, the Lyapunov vectors are still defined locally, and thus vary
with position on the attractor, and hence with time.

Singular vectors are, in general, not modal. For the application in §3a, their
shape evolves not only in geographical space but also in the spectral distribution
of energy. This spectral evolution describes, in a linear context, the upscale energy
transfer associated with turbulent processes. To study this upscale energy transfer
more explicitly we introduce a spectral projection operator P, ,,], where [ny, n]
denotes the total wavenumber interval ny < n < ng. Py, n, is defined as

z, if n € [ny,nsl,

Py o) Tn = {0 otherwise. (2.12)

Here z,, is the wavenumber n component of the spherical harmonic expansion
of the (atmospheric) state vector. If we wish to find perturbations, initially con-
strained to be in [n3, n4], with maximum energy in [n;, no|, these are given by the
singular vectors of Py, n,) L P, n,)-

When systems with a large number of degrees of freedom (e.g. O(10*) or more)
are considered, the eigenvalue problem (2.5) and (2.6) cannot be solved using
conventional matrix algorithms. However, iterative techniques provide an alter-
native possibility if the adjoint propagator has been coded. The power method,
whereby a random initial vector is operated on repeatedly by L* L, is an example.
A more sophisticated technique such as the Lanczos algorithm (Strang 1986) is
required if more than the largest singular vector is required.

Phil. Trans. R. Soc. Lond. A (1994)
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Singular vectors and the predictability of weather and climate 463

3. Applications of singular vector analysis

(a) The Lorenz model

The first application of the above formalism is to the prototype dissipative
chaotic system: the Lorenz (1963 a) model

X =—0X +0Y, (3.1a)
Y =-XZ+rX-Y, (3.1b)
Z=XY —-bZ, (3.1¢)

Figure 1 shows the familiar Lorenz attractor, superimposed on which are three
ensembles of points integrated from initial conditions on different parts of the
attractor. The dispersion of the ensemble identifies the origin as a region of par-
ticular unpredictability.

Singular values for the Lorenz model have been computed by a number of au-
thors (see, for example, Mukougawa et al. 1991; Abarbanel et al. 1991; Trevisan
1993). Figure 2 shows the distribution of exponents of dominant singular values
for two choices of the trajectory length. For relatively long trajectory portions,
the distribution of singular values is relatively narrow and is clearly asymptoting
to the appropriate largest Lyapunov exponent (here about 1.5). For short tra-
jectory portions the distribution of maximum exponents is broad, varying from
negative values (i.e. decaying singular vectors) to values over one order of mag-
nitude greater than the fastest growing Lyapunov exponent.

Figure 3a shows the state vector probability density function (PDF) of the
Lorenz model computed from a long integration. It is effectively symmetric with
maxima corresponding to the centroids of the butterfly-wing régimes. In figure
3b a constant forcing F' = 1/4/2 is applied to the right-hand side of (3.1a,b).
The system continues to be chaotic, though the PDF is now biased to one of
the régimes; however, the phase space position of the régime centroids remains
essentially unchanged. This behaviour can be understood by noting that the
influence of F' on the state vector is greatest near the origin where the dominant
singular value is large (see, for example, Palmer 1993).

These simple properties of the Lorenz model have some correspondence with
more complex models of the atmosphere and oceans; see below.

(b) A numerical weather prediction model

We discuss here results from a complex primitive equation numerical weather
prediction model used at ECMWF (Simmons et al. 1989). The adjoint of this
model has been coded (Courtier et al. 1991), and estimation of the first 20 or
so singular vectors, optimized over periods of a few days, are possible using an
iterative Lanczos technique. See Buizza & Palmer (1994) for details. The singular
vector calculations described here are made using 19 vertical levels with triangular
truncation at either wavenumber 21 or wavenumber 42.

We discuss some of the characteristics of atmospheric singular vectors from
a particular case study. During the period under question (9-12 January 1993),
there was a vigorous east—west oriented flow across the north Atlantic associated
with strong baroclinity. (During this period the oil tanker Braer was grounded
on the Shetland Island during heavy storms (Mansfield 1993).)

Phil. Trans. R. Soc. Lond. A (1994)
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464 T. N. Palmer and others

Figure 1. Phase-space evolution of an ensemble of initial points on the Lorenz attractor, for
three sets of initial conditions.

Figure 4 shows the dominant singular vector calculated using the primitive
equation model, for a three day trajectory portion made from initial condi-
tions on 9 January 1993, at three levels in the atmosphere (200 hPa, 700 hPa
and 850 hPa) at initial and optimization time. The figure illustrates features
which bear qualitative resemblance to idealized normal-mode baroclinic instabil-
ity (Charney 1947; Eady 1949): the disturbance clearly amplifies at is propagates
through the region of maximum baroclinity (where north-south temperature gra-
dients are strongest), and the disturbance shows evidence of westward tilting
phase with height, consistent with a northward flux of heat.

On the other hand, the figure also clearly illustrates the non-modal nature of
the disturbance and is qualitatively similar in some respects to idealized non-
modal optimal baroclinic excitation described by Farrell (1989). At initial time

Phil. Trans. R. Soc. Lond. A (1994)
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Figure 2. The distribution of the largest singular value, o, (shown as its exponent Ino for the
Lorenz model (3.1) for two trajectory lengths L = 2, L = 50. Each distribution is normalized to
unity. From Abarbanel et al. (1991).

12 1(a) 124 ®
6 6 -
F
y O Yy O /
N -
~12 1 —121
12 -6 0 6 12 12 -6 0 6 12
X X

Figure 3. PDF of the Lorenz model in the XY plane, low-pass filtered to remove oscilla-
tions around a régime centroid (a) from the unforced model (b) with a constant forcing
Fx = Fy = 1/\/2, Fz =0.

the disturbance is localized near the north Atlantic jet entrance region; at opti-
mization time the disturbance has propagated downstream to Europe. At initial
time, maximum disturbance amplitude is located in the lower troposphere, whilst
at optimization time maximum amplitude is located in the upper troposphere at
the level of maximum winds (understandable qualitatively using wave-activity
conservation concepts; see Buizza & Palmer 1994). Finally, the horizontal scale
of the initial disturbance is noticeably smaller at initial time than at optimization
time.

This final aspect of non-modality is explored further in figure 5 which shows the
energy distribution of the singular vector at initial and final time, as a function of

Phil. Trans. R. Soc. Lond. A (1994)
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(®)

Figure 4. (a)-(c) For description see opposite.
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(d)

H

Figure 4. Streamfunction of the dominant atmospheric singular vector calculated using a primi-
tive equation numerical weather prediction model for a three-day trajectory portion made from
initial conditions of 9 January 1993 at three levels (200 hPa (a), (d), 700 hPa (b), (e), 850 hPa (c),
(£))- Panels (a)-(c) show initial time. Panels (d)~(f) show optimization time. Contour interval
at optimization time is 20 times larger than at initial time.
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Figure 5. Energy distribution of three-day singular vector from 9 January 1993 as a function
of (total) wavenumber. Dashed lines show initial time with values multiplied by 20 in order to
be visible. Solid lines show optimization time. (a) For singular vector shown in figure 4. (b) For
singular vector with energy optimized for wavenumbers 0-10, and constrained to wavenumbers
0-10 at initial time. (¢) For singular vector with energy optimized for wavenumbers 0-10, and
constrained to wavenumbers 11-20 at final time.

total wavenumber. Figure 5a shows the spectral distribution of the disturbance
shown in figure 4 peaking near the truncation limit at initial time (dashed line)
and at about wavenumber 10 at optimization time. This upscale energy transfer
can occur because the basic state (unlike those in many idealized calculations)
is itself an unrestricted solution to the equations of motion, and in particular
contains scales comparable with those in the disturbance field. This allows triad
interactions between two disturbance scales and a third trajectory scale.

Figure 5b, ¢ shows the spectral distribution of two further singular vector cal-
culations made using this trajectory. In these further calculations, the spectral
projection operator has been applied both at initial and optimization time. For
both calculations the operator at optimization time maximizes energy between
wavenumbers 0 and 10. The initial perturbation is constrained at wavenumbers
0-10 in figure 5b and at wavenumbers 11-20 in figure 5c.

The results are quite dramatic. Constraining the perturbation to have the same
energy distribution in wavenumber space at initial and final time (which a normal
mode solution, if it exists, must have), severely restricts perturbation growth. On
the other hand, constraining the perturbation at initial and final time to have
energy in non-overlapping wavenumber intervals hardly restricts energy growth
at all.

The result of this calculation illustrates the butterfly effect in its original sense
(Lorenz 1963b), i.e. that small-scale initial disturbances will ultimately have an
overwhelming influence on large-scale disturbances. This is in addition to the
commonly perceived meaning of the butterfly effect that small-amplitude initial
disturbances will ultimately have an overwhelming effect on large-amplitude dis-
turbances. (In fact, Lorenz refers to the influence on the weather of a flap of a
sea~gull’s rather than a butterfly’s wings. In view of the location of the initial
singular vectors over the west Atlantic ocean, rather than, say, over Amazonia,
this original metaphor is fortuitously appropriate!)

At ECMWEF singular vectors from these primitive equation calculations are
now routinely used to construct initial perturbations for 10-day ensemble fore-
casts. Each ensemble comprises 33 individual forecasts. Within an ensemble, each
individual forecast essentially integrates a singular vector beyond the range for
which the linear approximation is valid (about 3 days). Figure 6 shows the ensem-
ble dispersion of two ensemble forecasts made one week apart. The first example
shows large dispersion, the second small. From a practical point of view a weather
forecaster would be warned that any single deterministic prediction from the first

Phil. Trans. R. Soc. Lond. A (1994)
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Figure 6. Ten-day ensemble forecast dispersion as measured by anomaly correlation between
500 hPa geopotential height of control and perturbed forecasts, over Europe (light lines). Skill
of 10-day control forecast (heavy line), (a) forecasts from 30 October 1993, (b) forecasts from
13 November 1993.

example is unlikely to be reliable, whereas any prediction from the second exam-
ple is likely to be relatively skilful. The skill of the operational ECMWF forecast
is also shown for these two cases confirming the ensemble predictions of reliabil-
ity. Using these ensemble predictions, ECMWF now routinely issues dynamically
based probabilistic weather forecasts out to 10 days.

From a meteorological point of view, both cases in figure 6 involved a transi-
tion in flow type. In some sense these mimic ensemble predictions (figure 1c¢,a)
in the Lorenz model, which also showed unpredictable and predictable régime
transitions.

THE ROYAL
SOCIETY

(¢) A coupled tropical ocean—atmosphere model

There is currently much excitement in the climate community about the fea-
sibility of making predictions about the natural year-to-year fluctuations of the
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Figure 7. Sea surface temperature of a dominant six-month singular vector at initial, (a), and
optimization, (b), time from a coupled ocean—atmosphere model of the tropical Pacific. Starting
conditions are in April, and the basic state is constructed from climatology.

climate system. Much of this excitement has stemmed from the demonstration
that the El Nifio/Southern Oscillation phenomenon is predictable up to a year
or so in advance using relatively simple numerical models of the atmosphere and
ocean coupled together (Zebiak & Cane 1987). El Nifio is the name given to an
irregular oscillation in the sea surface temperature of the tropical Pacific ocean.
The Southern Oscillation denotes a corresponding atmospheric perturbation in
the surface pressure field above the equatorial Pacific. According to Miinnich et
al. (1991), long-term variability of the El Nifio/Southern Oscillation phenomenon
is intrinsically chaotic (independent of the chaotic nature of weather itself).

It is known that during years in which the El Nifilo phenomenon is active, much
of the world’s weather patterns are significantly disturbed, leading to drought
in some parts of the world, floods in other parts and to overall global warming
(IPCC 1992). For example, the warming in surface temperature averaged over the
Northern Hemisphere is related to the existence of atmospheric teleconnections
arising from exitation of atmospheric planetary-scale wave patterns by anomalous
latent-heat release over the El Nifio area closely related to the patterns shown in
figure 8. These teleconnections lead to a bias in extratropical régime (or weather-
pattern) statistics, similar to that shown in figure 3b for the Lorenz model.

The skill of El Nifio forecasts made with coupled ocean—atmosphere models is
seasonally dependent (Cane et al. 1986). Typically, seasonal forecasts beginning
in spring tend to be less skilful than forecasts beginning, for example, in autumn.
Blumenthal (1991) has analysed the behaviour of the eigenfunctions of a linear
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Figure 8. (a) Two-dimensional cut of the PDF from 100 consecutive winters of a multi-decadal
integration in a T21L3 quasi-geostrophic model. (b), (c) The empirical orthogonal functions from
the model, used to define the axes in (a). The PDF is bimodal along the axis given by (b).
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Markov model approximation to a nonlinear coupled ocean—atmosphere model.
He finds that in summer the eigenfunction best describing the El Nifio oscillation
has a larger eigenvalue than at other times of year. On the other hand, in spring
this El Nino eigenfunction is least orthogonal to other modes, i.e. is associated
with large projectibility (see §2). Error growth in spring appears therefore to
be strongly associated with non-self-adjoint energy growth. Both types of error
growth (normal and non-normal) are implicit in singular vector analysis.

We show some preliminary results of a singular vector analysis applied to the
coupled ocean-atmosphere model of Battisti (1988). The ocean component of this
model is a single vertical mode tropical Pacific basin anomaly model, governed
by linear shallow water wave dynamics. The nonlinear thermodynamics are only
active in a surface mixed layer. The atmospheric component is a thermally forced
steady linear model with single vertical mode (Gill 1980). Air-sea interactions are
nonlinear, given by surface wind stress, heat flux, and sea surface temperature
(ssT). The number of independent degrees of freedom in the coupled model is
reduced to 420 by considering only the equatorial oceanic Kelvin mode, and first
three symmetric Rossby modes. With such a reduction, singular vectors can be
computed using conventional matrix algorithms.

Calculations described here are performed for six-month optimization times,
linearized about a climatological basic state. The optimization time is greater
than in §3b because of the longer predictability of this coupled atmosphere—
ocean oscillation. Singular vector calculations were made starting in April and
October, and are based on maximizing sea surface temperature variance.

For the April start, the dominant singular value is 6.22. The structure of the
sea surface temperature of this vector at initial and optimization time is shown
in figure 7. It illustrates non-modal growth consistent with the analyses of Blu-
menthal (1991) and Xue et al. (1994). At initial time there is an east-west dipole
in sea surface temperature perturbation; this evolves to a monopole structure in
the eastern Pacific similar to the mature El Niflo event itself. By contrast, the
dominant singular value for the October start is only 1.96.

According to the results described here, errors in the measurement of sea sur-
face temperature in the tropical Pacific (inevitable given the limited data in that
area) would have a significant impact on the accuracy of a six-month forecast of
the El Nino event for forecasts beginning around springtime; less so for forecasts
beginning in autumn.

In these calculations, the basic state has been constructed from climatology.
More generally the predictability of tropical Pacific sea surface temperature is a
function of the actual ocean—atmosphere state, particularly with respect to the El
Nifo oscillation. As with the calculations in §3b, these oceanic singular vectors
can be readily generalized to include observed variations in basic-state flow. Such
calculations are in progress.

(d) Climate change

One atmospheric forecast which has attracted more attention worldwide by
governments and the public alike, is of a trend to warmer temperatures as an-
thropogenic greenhouse gases, such as CO,, increase. Such warming necessarily
occurs in a one-dimensional radiative equilibrium atmosphere without dynam-
ics. However, one can ask the question of how chaotic nonlinear dynamics may
compromise such radiative equilibrium calculations.
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As discussed in §3a, for the Lorenz model, the impact of a small externally
imposed forcing on a dynamical system is potentially greater on parts of the
attractor where singular values are large. On the other hand the response to
this forcing, given by changes in the system PDFs, may be largely determined by
the values of the PDFs at régime centroids, well removed (in phase-space) from
regions of maximum instability. Whether the response to the imposed forcing is
an increase in the frequency of one régime rather than another, may depend quite
strongly on the local attractor geometry in the regions of strong instability.

In principle it would be possible to run the primitive equation model above over
long climatic periods of time, and obtain detailed knowledge of the structure of
the climate attractor, and associated estimates of the singular-vector structure
of this attractor. However, this is overwhelmingly too computationally expensive
at present. On the other hand, excessive truncation of the atmospheric equations
of motion (say to less that 100 degrees of freedom) produces results which may
depend excessively on quasi-resonant properties of low-order models.

However, it is now feasible to run quasi-geostrophic models with reasonable
resolution over century periods of time, and compute local singular vector struc-
tures. Figure 8a shows the PDF from a 100 consecutive winter sample of a 1200
perpetual winters integration of a 3-level T21 quasi-geostrophic model (Marshall
& Molteni 1993). Singular vectors from this model can be estimated using con-
ventional matrix eigenvector techniques (Molteni & Palmer 1993). The PDF is
estimated in a phase-space plane spanned by two of the dominant empirical or-
thogonal functions of the model. It can be seen that the PDF during this chosen
period is bimodal along an axis that corresponds to the intensity of the north
Atlantic jet (figure 8b). These two model régime centroids would generate differ-
ent surface temperature fields, both over the Atlantic and Europe. (In fact the
calculations described in § 3 b were made when the atmosphere was in one of these
régimes with strong north Atlantic westerlies.) The impact of a small external
forcing would lead to either an increase or decrease in one régime over another.
Which one increases may depend crucially on the geometry of the attractor at
some possible unstable saddle point between the régimes. As such, the fact that
one régime is associated with warmer temperatures than the other is not directly
relevant in determining whether its PDF increases or decreases. Calculation of
singular vectors associated with finite trajectory portions that make up the PDF
in figure 7a are currently under way.

These general remarks also apply to considerations of changes to global tem-
perature. For example, as mentioned above, global-mean temperature tends to
be warmer than average during years in which the El Nifio event is active. If the
impact of enhanced greenhouse gases was to alter the frequency of El Nifio events,
then over decadal and longer timescales, this would contribute to a component
of global climate change. We have briefly discussed the structure and growth of
singular vectors in the tropical Pacific that lead to El Nino. Projection of ra-
diative forcing from enhanced CO, onto these geographically localized singular
vectors (particularly during the northern spring and summer) may be critical in
determining this component of global temperature change.

These considerations are, of course, implicit in the calculations of climate
change made with our best comprehensive global circulation models (IPCC 1992).
These models consistently predict global warming, qualitatively similar to the ra-
diative equilibrium calculations. The models are our best hope at quantifying cli-
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mate change, and their predictions must therefore treated seriously. On the other
hand, such models are not free of systematic error; not least they are generally
poor in simulating the observed statistics of the El Nifio/Southern Oscillation
phenomenon. Analysis of the processes by which atmosphere-ocean dynamics
influence climate is an important component of research on climate change.

4. Conclusions

We have described the formalism of singular vector analysis which allows one
to study local phase-space instability of inhomogeneous chaotic attractors. Using
adjoint models and iterative eigenvector solvers, we are able to apply the for-
malism to large-dimensional systems. In this paper we have applied the method
to the study of the predictability of weather and climate. However, in princi-
ple, the techniques may also be of use in studies of the predictability of other
large-dimensional chaotic systems as occur, for example, in the natural sciences,
engineering, economics and elsewhere.
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Figure 1. Phase-space evolution of an ensemble of initial points on the Lorenz attractor, for
three sets of initial conditions.
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